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Spectral Determinants for Schro� dinger Equation and
Q-Operators of Conformal Field Theory
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Relation between the vacuum eigenvalues of CFT Q-operators and spectral
determinants of one-dimensional Schro� dinger operator with homogeneous
potential, recently conjectured by Dorey and Tateo for special value of Virasoro
vacuum parameter p, is proven to hold, with suitable modification of the
Schro� dinger operator, for all values of p.
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In recent remarkable paper(1) a novel relation was observed between the
vacuum eigenvalues of so-called Q-operators introduced in ref. 2 and the
spectral characteristics of the Schro� dinger equation

[&�2
x+|x|2:] 9(x)=E9(x) (1)

Namely, for special value of the vacuum parameter p (see below) the
vacuum eigenvalues of the operators Q+ and Q& essentially coincide with
the spectral determinants associated with the odd and even sectors of (1),
respectively. In this note we show that a similar relation, with an appropri-
ately generalized spectral problem (1), holds for all values of the vacuum
parameter p.

The Q operators were constructed in ref. 2 in our attempt to under-
stand c<1 CFT as completely integrable theory; they appear to be the
CFT versions of Baxter's Q-matrix which plays most important role in his
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famous solution of the eight-vertex model.(3) The Q-operators of ref. 2 are
actually the operator functions Q\(*), where * is a complex parameter.
These operators act in Virasoro module with the highest weight 2, this
weight and the Virasoro central charge c being conveniently parameterized
as 2=( p�;)2+(c&1)�24 and c=1&6(;&;&1)2, with 0<;2�1. The
highest weight state | p) (the Virasoro vacuum) is an eigenstate of Q\(*)
and we use the notation

*\2?ip�;2A\(*, p)=(p| Q\(*) | p) (2)

for the corresponding eigenvalues. These eigenvalues deserve most detailed
study, for various reasons (see refs. 2, 4). Let us mention here some of their
properties relevant to the present discussion (details and derivations can be
found in refs. 2, 4).

(i) A\(*, p) are entire functions of the variable *2 with known
asymptotic behavior

log A\(*, p)&M(&*2)1�(2&2;2), |*2| � �, arg(&*2)<? (3)

where

M=
1 (;2�(2&2;2)) 1 ((1&2;2)�(2&2;2))

- ?
(1 (1&;2))1�(1&;2)

(ii) A+(*, p) is meromorphic function of p, analytic in the half-plane
Re(2p)>&;2, and A&(*, p)=A+(*, &p). The coefficients an( p) of the
power series expansion

log A+(*, p)=& :
�

n=1

an( p) *2n (4)

exhibit the following asymptotic behavior

an( p)tp1&2n+2n;2
as p � � (5)

in the half-plane Re(2p)>&;2.

(iii) A\(*, p) satisfy the functional relation (so-called quantum
Wronskian condition)

e2?ipA+(q1�2*, p) A&(q&1�2*, p)&e&2?ipA+(q&1�2*, p) A&(q1�2*, p)

=2i sin(2?p) (6)
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where

q=ei?;2
(7)

It is important to stress here that above conditions (i)�(iii) define the
functions A+(*, p) uniquely (see Appendix in ref. 4).

Remarkably, according to ref. 1, in the special case p=;2�4 the zeroes
*2

n of A+(*, ;2�4) and A&(*, ;2�4) coincide, up to an overall factor, with
the energy eigenvalues En of the Schro� dinger equation (1) with

:=
1
;2&1 (8)

More precisely, let E &
n and E +

n (n=1, 2, 3,...) be ordered eigenvalues
corresponding to even and odd eigenfunctions in (1), respectively, and
define the spectral determinants,3

D\(E )= `
�

n=1 \1&
E

E \
n + (9)

The main statement of ref. 1 is

A\(*, ;2�4)=D\(\*2) (10)

where

\=(2�;2)2&2;2 1 2(1&;2) (11)

The key part of the arguments in ref. 1 leading to (10) is the functional
relation which the spectral determinants (9) obey; this relation was pre-
viously found in important series of works;(5�7) it turns out to be identical
to the functional relation (6).

We are going to show that a relation similar to (10) holds for generic
values of p, if one replaces (1) by the following more general spectral
problem. Consider the Schro� dinger equation

�2
x 9(x)+{E&x2:&

l(l+1)
x2 = 9(x)=0 (12)
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on the half-line 0<x<�. Here

l=
2p
;2&

1
2

(13)

and again : is related to ;2 as in Eq. (8). Let us assume that Re l>& 3
2 ,

and denote by �(x, E, l ) the solution of (12) uniquely specified by the
condition

�(x, E, l ): �(x, E, l ) �� 2?
1+:

(2+2:)&(2l+1)�(2+2:)

_
xl+1

1 (1+((2l+1)�(2+2:)))
+O(xl+3) as x � 0

(14)

This solution can be analytically continued outside the domain Re l>& 3
2 .

Obviously thus defined function �(x, E, &l&1) solves the same equation
(12), and for generic values of l the solutions

�+(x, E )=�(x, E, l ), �&(x, E )=�+(x, E, &l&1) (15)

are linearly independent, since

W[�+, �&]=2i(ql+1�2&q&l&1�2) (16)

where W[ f, g]= f �x g& g �x f is the usual Wronskian. For certain isolated
values of E one of these solutions decays at x � +�. Let [E+

n ]�
n=1 and

[E &
n ]�

n=1 be ordered spectral sets defined by the conditions

�+
n (x)#�+(x, E +

n ) � 0
(17)

�&
n (x)#�&(x, E &

n ) � 0

as x � +�, and let

D\(E, l )= `
�

n=1 \1&
E

E \
n + (18)

Simple WKB analysis of the equation (12) shows that

E\
n tn2:�(1+:) as n � � (19)

and therefore for :>1 these products converge, and (18) defines entire
functions of E. It is easy to see that in the special case l=0 the sets
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[E +
n ]�

n=1 and [E&
n ]�

n=1 become the components of the spectrum of (1)
associated with odd and even sectors, respectively, and so for l=0 the
functions (18) reduce to (9). In what follows we will show that for :>1
and all values of p

A\(*, p)=D\(\*2, 2p�;2&1�2) (20)

We start with an observation that the following transformations of the
variables (x, E, l ),

4� : x � x, E � E, l � &1&l (21)

0� : x � qx, E � q&2E, l � l (22)

with q=ei?�(1+:), leave the equation (12) unchanged while acting non-
trivially on its solutions. As usual, the equation (12) admits a unique solu-
tion which decays at large x; we denote this solution as /(x, E, l ) and fix
its normalization by the condition

/(x, E, l ): /(x, E, l ) � x&:�2 exp {&
x1+:

1+:
+O(x1&:)= as x � +�

(23)

The transformation 0� applied to /(x, E, l ) yields another solution, and the
pair of functions

/+(x, E )=/(x, E, l ), /&(x, E )=iq&1�2/(qx, q&2E, l ) (24)

form a basis in the space of solutions of (12). It is not difficult to check that

W[/+, /&]=2 (25)

i.e., the solutions (24) are indeed linearly independent. The solutions (15)
can always be expanded in this basis, in particular

�+=C(E, l ) /++D(E, l ) /& (26)

with some nonsingular coefficients C(E, l ) and D(E, l ). The transforma-
tions (21) and (22) act on the solutions (15) and (24) as follows,

4� �\=��; 4� /\=/\ (27)

0� �\=q1�2\l\1�2�\; 0� /+=&iq1�2/&, 0� /&=iq1�2/++u/& (28)
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with some coefficient u=u(E, l ). It follows from (28) that

C(E, l )=&iq&l&1�2 D(q&2E, l ) (29)

Also, applying (27) to (26) one obtains

�&=D(E, &l&1) /&&iql+1�2 D(q&2E, &l&1) /+ (30)

Let us mention here a useful identity

D(E, l )= 1
2W[/+, �+] (31)

At this point we are ready to prove that the pair of functions D(E, l )
and D(E, &1&l ) satisfy all the conditions (i�iii) above and, since these
conditions characterize these functions uniquely,

D(\*2, \2p�;2&1�2)=A\(*, p) (32)

Indeed, the analyticity conditions in (i) and (ii) can be derived from (31),
while asymptotics there are established by a straightforward WKB analysis
of the equation (12). Finally, combining Eqs. (26), (29), (30), (16), (25)
one obtains the relation

ql+1�2 D(q2E, l ) D(E, &l&1)&q&l&1�2 D(E, l ) D(q2E, &l&1)

=ql+1�2&q&l&1�2 (33)

which is identical to (6).
To prove our statement (20) it remains to show that the coefficient

D(E, l ) in (26) coincides with the function D+(E, l ) defined in (18). Both
are entire functions of E. As follows from (26), these functions share the same
set of zeroes in the variable E and hence F(E, l )=log(D+(E, l )�D(E, l )) is
an entire function of E. However, E � � asymptotic form of D+(E, l ) is
controlled by asymptotic n � � density of the eigenvalues E +

n which can
be computed semiclassically. The result shows that F(E, l ) � 0 as E � �
and hence F(E, l )=0. Although strictly speaking our proof of (20) is valid
only if :>1, the above arguments and the definition (18) can be modified
to accommodate wider range of this parameter. We will not elaborate this
point here.

In a few special cases the function A+(*, p) was calculated explicitly.(2, 8)

Let us consider these examples to illustrate the identity (20). First, for
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harmonic oscillator case :=1 (which corresponds the c=&2 CFT, i.e., the
``free fermion'' theory) the spectrum of (12) is very well known

E+
n =4n+2l&1, n=1, 2... (34)

which allows one to obtain

D+(E, l ) |:=1=
1 (3�4+l�2) eCE

1 (3�4+l�2&E�4)
(35)

where C is a constant whose value depends on the choice of Weierstrass
factors required in this case to make the product (18) convergent. The
Eq. (35) is identical to the known expression for A+(*, p) |;2=1�2 .(2) Next,
in the limit : � +� and l fixed (which corresponds to the classical limit
c � &� in CFT) the equation (12) reduces to the radial Schro� dinger
equation for the spherically symmetric ``rigid well'' potential

x2: |: � +�={0,
+�,

if 0<x<1
if x>1

(36)

for which the energy levels are related to the zeroes of the Bessel function,
and (18) yields

D+(E, l ) |: � +�=1 (l+3�2)(- E�2)&l&1�2 J l+1�2(- E ) (37)

where J&(z) is the conventional Bessel function. Again, this expression coin-
cides with the limiting form of A+(*, p) |;2 � 0 . (2) Finally, for :=1�2 and
l=0 the spectral determinants (18) are expressed in terms of the Airy func-
tion, (7, 1) in agreement with A\(*, 1�6) | ;2=2�3 obtained in ref. 8.

We would like to mention also some possible applications of the rela-
tion (20). In ref. 2 the exact asymptotic expansions for A\(*, p) at large *
were found. The coefficients in these expansions are expressed in terms of
the spectral characteristics of CFT, namely the vacuum eigenvalues of its
local and non-local integrals of motion. In view of (20) these expansions
can be used to derive the large n asymptotics of the energy levels E\

n . In
particular, the leading terms read

E +
n =_- ? 1 (3�2+1�2:)

21 (1+1�2:) &
2:�(1+:)

(4n+2l&1)2:�(1+:)

_\1&
2: cot(?�2:)
3?(1+:)2

12l 2+12l&2:+1
(4n+2l&1)2 +O(n&4, n&1&2:)+ \:>

1
2+
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E+
n =_- ? 1 (3�2+1�2:)

21 (1+1�2:) &
2:�(1+:)

(4n+2l&1)2:�(1+:)

_\1+
2:1 (&1�2&:)

(1+:) - ? 1 (&:) _
21 (1+1�2:)

- ? 1 (3�2+1�2:)&
2:

_
1 (l+:+3�2)
1 (l&:+1�2)

(4n+2l&1)&2:&1

+O(n&2, n&1&4:)+ \0<:<
1
2+

E+
n =(3?(4n+2l&1))2�3 \1

4
+

12l(l+1) log(3?(4n+2l&1))
27?2(4n+2l&1)2

&
18l 2+6l&5+12l(l+1) �(l+2)

27?2(4n+2l&1)2 +O(n&3)+ \:=
1
2+ (38)

where �(z)=�z log 1 (z) and n � �. Using expressions for the local and
non-local integrals of motion given in refs. 9, 4, it is not difficult to extend
these expansions substantially further, but first few terms already yield
remarkable accuracy even for lower levels n�4.

The vacuum eigenvalues of the Q-operators, i.e., the above functions
A\(*, p), appear also in studying a quantum problem of a Brownian particle
in the potential U(X )=&2?} cos(X )&VX at finite temperature T. In the
Caldeira�Leggett approach(10) this problem is related to so-called bound-
ary sine-Gordon model (with zero bulk mass), (11) and it was shown in
ref. 4 that some expectation values in this problem are expressed through
the above functions A\(*, p) with pure imaginary p B iV and * B i}. In
particular, the nonlinear mobility J(V )=(X4 ) is

J(V )=V+i?T}�} log _A+(_}, &i (V;2�4?T ))
A&(_}, &i (V;2�4?T ))& (39)

where ;2 B � is a quantum parameter and _=i(;2�2?T )1&;2
sin(?;2)�;2

(see ref. 4 for details). The equation (39) has nice interpretation in terms of
the Schro� dinger problem (12). To see this let us make a variable transfor-
mation in (12), x=e y, 9=e y�29� , which brings (12) to the form

&�2
y9� +[e2y�;2

&Ee2y] 9� =&29� , &=i
2p
;2 (40)
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The potential term in (40) decays at y � &� and therefore for pure
imaginary p=&i&;2�2 (40) defines a scattering problem, the reflection
scattering amplitude S(&, E ) being defined as usual as the coefficient in the
y � &� asymptotic

9� ( y) � ei&y+S(&, E ) e&i&y as y � &� (41)

of the solution 9� ( y) which decays at y � +�. This coefficient is readily
extracted from (26), (29) and (30),

S(&, E )=&
1 (1+i&;2)
1 (1&i&;2)

D(E, &1�2+i&)
D(E, &1�2&i&) \

;2

2 +
&2i&;2

(42)

Using the relations (32) we have for (39)

J(V )=V&2i?TE �E log S \ V
2?T

, E+ , E=&
}2?2

1 2(1+;2)
(?T )2;2&2

(43)

i.e., the nonlinear mobility (39) is expressed in terms of the scattering phase
in the Schro� dinger problem (40). Note that this expression allows one to
prove the duality relation ;2 � 1�;2 for J(V ), first proposed in ref. 12, by
simple change of the variables in (40).

In conclusion, let us remark that the main ingredient used in deriva-
tion of the functional equation (33) is the symmetries (21), (22) of the
Schro� dinger operator (12). Clearly, it is possible to modify this operator
while preserving these symmetries. This suggests that the relation between
the eigenvalues of Q-operators of CFT and spectral characteristics of
Schro� dinger operators may be generalizable to excited-states eigenvalues
of Q\ and, more importantly, to Q-operators corresponding to massive
integrable field theories (sine-Gordon model).
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NOTE ADDED

After this work was completed and posted in hep-th�9812247, some
further interesting developments of the Doorey�Tateo relation appeared in
the literature, see refs. 13�15. Other related recent works are ref. 16.
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